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The criterions of optimal stabilization of motion with respect to a part of the
variables which are established here, modify the theorems of Krasovskii [1]
and Rumiantsev [2,3]. Application of these criteria to autonomous systems
is studied and an example given.

1. Let us consider a system of differential equations of perturbed motion of a con-
trolled system

X=X xu (X(0,0=0) (1.1)

X == (Y1, ooy Yms D1y« o oy Zp)y W= (g, ..., Uy},
m>0, p20, n=m-+p, r>0

we choose a certainclass K = {u (¢, x)} ofcontrols u (¢, x) continuous in the region

>0, [yIS<H>0 0 |zll<<oo (1.2)
and assume that forany u = u (¢, x) = K
a) the right hand sides of the system (1, 1) are continuous in the region (1. 2) and
satisfy the conditions of uniqueness of the solution;
b) solutions of the system (1,1) are z -continuable, i.e. every solution x (f)
is defined for all ¢ > 0 for which ||y () || <C H.
Weuse , as the control quality criterion , the condition of minimum of the integral [1]
J = S‘m(t, x[tl,ufthdt, >0 (1.3
In
for all u (¢, x) & K. The problem of optimal y -stabilization [2,4]in class K
consists of finding a function u = u° (¢, x) & K ensuring the asymptotic y -stabi-
lity of the motion x = 0, and the following inequality must hold for any function u =
u* (¢, x) & K satisfying this condition:
Vot e, v de < Sw £, x* [¢], u* [t]) dt
te
for tg > O, x° [to] == x* [tq] = Xg. H Xa [l < A = const.
2. Following [1] we adopt the notation

BV, t, x,u] = 6t e dx X (¢, x, u) 4+ o, x, u) (2.1)
Theorem 1, Assume that the functions u == u’ (f, x) & K and a function

284



Optimal stabilization of motion 285

V (2, x) exist and satisfy the following conditions:
1) when u = u° (¢, x) ,the motion x =  is asymptotically Yy -stable;
2) BV, ¢, x,u° (4 X}} = 0;
3) BIV,t,x,u(t,x)] >0 forany u (¢, x) &= K;
4) the following inequality holds for every control u* (1, ) & K ensuring the
asymptotic Y -stability of the motion x =0 :

mV ¢, x°[t]) > Lm V {t, x* [¢]) (2,2)
{-rco troo

(where we assume that the limits appearing in (2.2) exist).
Thenthe function u = u® (¢, x) solvesthe problemofoptimal Y -stabilization in
class K.

Proof, By virtue of condition 2) of the theorem the relation 4V (¢, x° [¢]) /
dt = —w (£, x° [¢], u®[z]) holds. Integrating this relation we obtain

V (to, Xo) = Xm(t, x° [t], w®[t])dt + lim V (¢, x°[t]) (2.3)
to t—oo

By virtue of condition 3) of the theorem the inequality 4V (¢, x* [¢]) / dt >
—a (¢, x* [¢]) holds forthe function u* (¢, x) & K satisfying the condition 4).
Integrating this inequality we obtain

V (to, x0) << f ©(t, x* [t], u* [t])dt + lim V (¢, x* [t]) (2.4)
lo 1o
From (2.3) and (2, 4) we have, by virtue of (2,2),
fo, cr, wind < §o, x* (1), wrz)de +
to to

ImV (¢, x*[t]) — lim V (¢, x°[t]) < Sm (¢, x*[t], u* [t])dt
troo f—oeoc

Q.E.D.

From the practical point of view the most interesting case is that, in which the 1i-
mits appearing in (2, 2) are equal to zero, Namely, from Theorem 1 follows

Corollary, Assume that the functions u° (¢, x) & K and V (2, X) satisfying
the conditions 1) — 3) of Theorem 1 exist and the following relation holds for any control
u* (f, x) &= K satisfying the asymptotic ¥ -stability of the motion x = 0 :

Hm V (¢, x°[¢]) = lim V (¢, x*[¢]) =0 (2.5)

t—oso {00
Then the function u® (£, X) solves the problemof optimal y=stabilizationinclass K.

Notes, 1). Theorem 1 modifies the results of [1 — 3] in two aspects, Firstly the
relation (2, 2) is more general than the equality (2, 5) the validity of which was guar-
anteed by the theorems of [1—3]. Secondly, in the theorems of [1 — 3] the asymp -
totic stability (with repsect to all or some of the variables) of the motion x = 0 was
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established for u = w° (¢, x) with help of the same function V which was used to

establish the conditions 2) and 3) of Theorem 1 and the relation (2,5), although con-
dition 1) of Theorem 1 can be verified using another Liapunov function (which may be
a vector function) satisfying the conditions of any theorem of asymptotic y=-stability [4].

2)e If im V (5, x°[t) =0 a5 ¢— oo, then by virtue of (2.2) Theorem 1
can be used only if the condition that lim V (¢, x* [¢]) << 0 as ¢ — oo, holds. Whenthe
function V isnonnegative, the latter inequality becomes an exact equality (see (2. 5) ).

3. Let us assume that the system (1, 1) and the control quality criterion (1.3) are
time independent and have respectively the following form:

X' =X (x, u) (3.1)
J =[x, uptpdt (3.2)

and continuous functions independent of ¢ appear in the class K = {u (x)} .

Theorem 2. Assume that forany u (x) & K  every solution of the system
(3.1) originating in some neighborhood of the point X == 0 is bounded, and let the
functions u°® (x) = K and V (x) be such that

VD VE)>a(yl) where a (r) is a continuous function monotonously in-
creasing on [0, H] and 2 ( ) =

2) BIV,x,u® (x)] = and

=0 when xe M

V fumwemy = — o (x, “o(x)){ <0 when x=m

3) BIV,x,u(x)l >0 forany ux)e K;
4) theset (5] My, =M () M; does not contain any whole semi-trajectories
(t = [0, 00)) of the system (3.1) when u = u® (x) where M,= {x: V (x) > 0};
5) the relation lim V (x* [t]) = 0 as ¢ — oo holds for any control u*
(x) & K ensuring the asymptotic Yy -stability of the motion x =0,
Thenthe function u = u® (x)} solvesthe problem of optimal y -stabilization in
class K.

Proof. By virtue of theconditions 1),2) and 4) and Theorem 4 of [5 ], the mo-
tion x = 0 ofthesystem (3,1) with u = u°® (x) isasymptotically y- stable ( and
uniformly stable over {fo, Xo}), and lim V (x°[#]) = 0 as z— co. Subse-
quent application of the corollary of Theorem 1 completes the proof,

Example. Letus considera mechanical holonomic system with generalized

coordinates ¢i, - - -, ¢n and time-independent constraints acted upon by the potential
gyroscopic and certain other forces {3 ]
r
Q= 3 my(@u; @) (3.3)
i=1
uj=Owhengi = ... =gqm=q' = ... =" =0(m < n)
so that the equations of motion have the form

d orT aT
daidg, “a_q. __aql+zguqy +Zmu g (E=1..,n g;=-—g;) (3.4)

=1 [ES
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Using the totalenergy H = T + U of thesystem as the Liapunov function, we obtain [3]

H = 2 Qi = X D myue; 3.5)

=1 i=1 j=1
Let us assume that [5 —17]
1) when u= 0 ,the system(83,4) admits a particular solution 4=¢q =0
(position of equilibrium);

2) the potential energy U = U (g1, . . ., gn) is positive-definite with respect to
g1 -+ gm (m < n);
3) any mechanical considerations will show that the coordinates gm+1s.- - -, gn

arebounded in every perturbed motion (e. g. the coordinates may be angular (mod 2a) (7] ;
4)when u=0 , theset U (q) >0 does not contain any positions of equilibrium
of the system (3,4).

Following [3], we shall pose the problem of determining the controls  u; = u;°
ensuring the asymptotic stability of the position of equilibsium ¢ = q" = 0 with respect
to qu .- qm @1y o .y qn’ and minimizing the functional

oo r
J =§ (F (@ q9°) + i;ﬁ 6ijuiuj> at (3.6)
in which F (q, 9"} is a nonnegative function to be determined, and the quadratic form
is a positive-definite function of the controls,

In [3] the conditions B [H,q,q’,u}=0 and B[H,q,q,u]l>0 wereused

to show that the optimal controls u;° and the function F have the form

N AL v (3.7)
o 1 ] . 3.7
uf = — E -A_"’ 2 mq;

=1 i=1

F(g, q9)= Z ﬁijufuj" (3.8)

i, j=1

Letus assume that the quadratic form (3. 8) is positive-definite with respectto ¢:", -

-» gn’. Taking intoaccount the factthat [3] H = — 2F when uj = u;° we can
conclude ,using (5, 6 ], that the position of equilibrium ¢ = q" = 0 with uj = u;° is
asymptotically stable with respectto 91, - - -» gm» @1’ - - -» @’ (and uniformly in

{to» G0» 90'})s and Lim H (¢°[1), q°[2t]) = 0 as ¢ — oo.
Let now u;* denote any control ensuring the asymptotic stability of the equilibrium
q=q = 0 withrespectto ¢1, ..., gm, ¢1’» ..., gn'. Theset I'* ofthe w-limit
points of any perturbed motion {q * {#], q"* [¢]} isnonempty by virtue of condition 3), in-
variant [8] and consists therefore of the positions of equilibrium, Consequently, by virtue
of 2) and4) U =0 ontheset I'* andthisimpliesthat lim H (q* {t], ¢* [¢]) = 0
as &t — oo,
Using Theorem 2, we arrive at the following conclusion: the controls (3, 7) solve
the problemofoptimal (g1, - - -, gm, @'y . - ., gn’) -stabilization of the position of
equilibrium q = q' = 0 under the control quality criterion (3,6), (3,8).

4, Whencondition (2, 2) ceasestohold, Theorem 1 becomesinvalid and thiscanbe
confirmed in the following example. Let us consider a second order autonomous system
(4.1) with the quality criterion (4.2).
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yo=—y, 2= — (4.1)

J = j % -+ 22y dt (4.2)
0

we consider the positive-definite quadratic form V = 1/, (42 + 22) as the opti-
mal Liapunov function, Its derivative with respect to time is, by virtue of the system
(4.1), V' = — y? — z%4%  therefore we have
B{V,y,z,ul=0 (4.3)
Thus every control « satisfies the conditions 1) — 3) of Theorem 1, It follows
therefore that the integral (4, 2) must have the same value at all u. This is not
however the case, When u = 4V =y ,the solutions of (4, 1) have the form

¢
0[] = yee!, 2V [t] = zpexp [— 5 yof’e“”dr]
0

from which on the basis of (4.3) we obtain

o

Iy = S PU+Da =V (o, 2)—HmV (D[], SV [1) = (4.4)
0

.;_ [9o? + 262 (1 — exp (— yo2))]

When u = u® = 0 ,solutions of the system (4, 1) have the form y® [1] = e,
2@ [1] = zp, and from this we have, by virtue of (4.3),

1 .9
——é-yo {4,5)

Ty = S ydi =V (yo, 20)— I V 2 1], 2@ 1) =
4]
Combining (4,4} and (4. 5) we arrive at the inequality

J lu-:-.u(l)> J §u=u(2) when ¥o+0, 2,0 Q. E, D,
We take this opporfunity to note that e.g, under the conditions of the Marachkov
theorem [9] the function V need not tend to zero along the solutions, This can be

illustrated by means of the following example, For the scalar equation ' = —z
the positive-definite function V (¢, z) = Y3 (1 + exp (2 #)) 2  which does not admit
an infinjtely small upper bound, has a negative-definite derivative V' = — 2%

Then along the solutions we have

HmV(t, z() = lm Vo (1 - e*) 22 ' = V2,520 when 12,50
{00 t-r00
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